12:37pm Sunday 24 September 2017

Penn Researchers Describe Cellular Source of Most Common Type of Abnormal Heart Beat

PHILADELPHIA – While studying how the heart is formed, scientists at the University of Pennsylvania School of Medicine serendipitously found a novel cellular source of atrial fibrillation (AF), the most common type of abnormal heart beat. Jonathan Epstein, MD, William Wikoff Smith Professor, and Chair, Department of Cell and Developmental Biology, and Vickas Patel,   MD, PhD, Assistant Professor of Medicine,  have identified a population of cells in the atria of the heart and pulmonary veins of humans and mice that appear to be the seat of AF. The finding may lead to a more precise way to treat AF, with reduced side effects. Their findings appear online in the Journal of Clinical Investigation.

This group of cells expresses the protein DCT, which is also involved in making the skin pigment melanin and in the detoxification of free radicals. The researchers also showed that the DCT-expressing cells in the mouse heart were a distinct cell type from heart-muscle cells and pigment-producing cells, although they conduct electrical currents important for coordinated contraction of the heart. The location of these cells in the pulmonary veins suggested their possible role in AF because AF can arise in these blood vessels.  Atrial fibrillation is a very common and debilitating disease that greatly affects quality of life.

Know ing the location of these cells may help develop better treatments for AF. “We already target the pulmonary veins for radiofrequency ablation, a nonsurgical procedure using radiofrequency energy similar to microwaves, to treat some types of rapid heart beating as a relatively new treatment, and sometimes cure, for AF,” notes Epstein.

“For the most part, current drug therapy for atrial fibrillation has been disappointingly ineffective and drug therapy is often associated with burdensome side-effects,” notes Patel.”

“If these cells are truly the source of AF in some patients, and we can figure out a way to identify them, then our ablation can be far more precise and targeted, thus limiting potential side effects, making the procedure potentially more simple and rapid, and hence more cost effective,” explains Epstein.

But the investigators caution more research is needed to get to the point where these ideas can be validated in patients. “The findings hold out promise for a more precise cellular target for treating this common disorder,” adds Epstein.

This research was funded by grants from the NIH, the Cotswold Foundation, the WW Smith Endowed Professorship, the W.W. Smith Chartiable Trust, and the Gunther Fund for Cardiovascular Research.

###

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is currently ranked #3 in the nation in U.S.News & World Report’s survey of top research-oriented medical schools; and, according to the National Institutes of Health, received over $366 million in NIH grants (excluding contracts) in the 2008 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation’s first hospital; and Penn Presbyterian Medical Center, named one of the nation’s “100 Top Hospitals” for cardiovascular care by Thomson Reuters. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.


Share on:
or:

MORE FROM Blood, Heart and Circulation

Health news