Gene mutation enhances cognitive flexibility in mice, NIH study suggests

What

Researchers at the National Institutes of Health have discovered in mice what they believe is the first known genetic mutation to improve cognitive flexibility—the ability to adapt to changing situations. The gene, KCND2, codes for a protein that regulates potassium channels, which control electrical signals that travel along neurons. The electrical signals stimulate chemical messengers that jump from neuron to neuron. The researchers were led by Dax Hoffman, Ph.D., chief of the Section on Neurophysiology at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). It appears in Nature Communications.

The KCND2 protein, when modified by an enzyme, slows the generation of electrical impulses in neurons. The researchers found that altering a single base pair in the KCND2 gene enhanced the ability of the protein to dampen nerve impulses. Mice with this mutation performed better than mice without the mutation in a cognitive task. The task involved finding and swimming to a slightly submerged platform that had been moved to a new location. Mice with the mutation found the relocated platform much faster than their counterparts without the mutation.

The researchers plan to investigate whether the mutation will affect neural networks in the animals’ brains. They added that studying the gene and its protein may ultimately lead to insights on the nature of cognitive flexibility in people. It also may help improve understanding of epilepsy, schizophrenia, Fragile X syndrome, and autism spectrum disorder, which all have been associated with other mutations in KCND2.

Who

Dax Hoffman, Ph.D., chief of the NICHD Section on Neurophysiology, is available for comment.

Article

Hu, JH, et al. Activity-dependent isomerization of Kv4.2 by Pin1 regulates cognitive flexibility. Nature Communications.2020.

This media availability describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process — each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge of fundamental basic research.

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): NICHD leads research and training to understand human development, improve reproductive health, enhance the lives of children and adolescents, and optimize abilities for all. For more information, visit https://www.nichd.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

 

NIH…Turning Discovery Into Health®