11:42pm Sunday 12 July 2020

Chemical signals in the brain help guide risky decisions

A gambler’s decision to stay or fold in a game of cards could be influenced by a chemical in the brain, suggests new research from the University of British Columbia.

 Stan FlorescoThe rise and fall of dopamine plays a key role in decisions involving risk and reward, from a baseball player trying to steal a base to an investor buying or selling a stock. Previous studies have shown that dopamine signals increase when risky choices pay off.

Stan Floresco
“Our brains are constantly updating how we calculate risk and reward based on previous experiences, keeping an internal score of wins and losses,” says Stan Floresco, co-author and professor in UBC’s Dept. of Psychology. “Dopamine appears to play an important role in these processes, influencing our everyday choices.”

The study saw rats choose between safe and risky rewards – similar to what investors face on Wall Street. Pressing one lever gave the rodents a small, but guaranteed reward, not unlike a bond. The other lever yielded a large reward or nothing, similar to a high-risk stock.

Researchers altered the rats’ decision-making process by shutting down or turning on the dopamine signals in their brains. When the rats played risky and lost, researchers turned on dopamine signals when normally they would have decreased. Subsequently, the rats made riskier decisions. Conversely, when the rats played risky and won, researchers turned dopamine signals off. Here, the rats began to play more conservatively.

“By temporarily knocking these chemical signals out, it demonstrates how significant they are in altering our decisions, even if it’s against our better judgment,” says Floresco.


Abnormal dopamine levels are associated with several psychiatric disorders, including schizophrenia, depression and drug addiction.

Current treatments for these disorders involve drugs that heighten or lower dopamine levels, but not immediately following a risk and reward decision, like the rats experienced. Therefore, the potential clinical application of the approaches used in the study is unclear.

“The timing of the stimulation is important,” explains Floresco. “By understanding how these signals work to influence our behaviour, these findings can provide insight into what happens when these signals go awry, as may occur in numerous psychiatric disorders.”

The study, Overriding Phasic Dopamine Signals Redirects Action Selection during Risk/Reward Decision Making, is published in Neuron.

Floresco’s co-authors are Colin Stopper, Maric Tse, David Montes and Candice Wiedman of UBC’s Dept. of Psychology and the Brain Research Centre.


Prof. Stan Floresco
UBC Psychology
Email: [email protected]

Bonnie Vockeroth
Communications Coordinator, UBC Psychology
Tel: 604-822-6265
Email: [email protected]


Public Affairs

310 – 6251 Cecil Green Park Road

Vancouver, BC Canada V6T 1Z1

Tel 604 822 6397


Share on:

MORE FROM Brain and Nerves

Health news