08:21pm Saturday 19 August 2017

Biomarkers in Blood Shown to Be Highly Selective Indicators of Brain Damage Caused by Traumatic Brain Injury

The researchers linked the changes in circulating UCH-L1 and GFAP proteins in rats to brain tissue damage and neuronal degeneration seen on examination of the rat brains and present their findings in an article published in Journal of Neurotrauma, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Journal of Neurotrauma website until August 21, 2015.

Xian-jian Huang and coauthors, Shenzhen University 1st Affiliated Hospital (China), University of California at Davis, Banyan Biomarkers, Inc. (Alachua, FL), and University of Messina (Italy), measured the levels of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), a protein specific to neurons, and glial fibrillary acidic protein (GFAP), a brain-specific protein made mainly by astrocytes in the blood and cerebral spinal fluid of rats that did and did not experience TBI. Measurements taken 2 days before injury and at 3, 6, and 24 hours after TBI showed significant differences in UCH-L1 and GFAP levels at different timepoints in injured versus non-injured animals. The correlation between increased protein levels and direct evidence of brain damage makes these promising biomarkers for assessing brain injury following TBI.

The authors describe their methods and results in the article “Acute Temporal Profiles of Serum Levels of UCH-L1 and GFAP and Relationships to Neuronal and Astroglial Pathology following Traumatic Brain Injury in Rats.”

“These studies are important not only from the basic science but also the clinical perspective,” says John T. Povlishock, PhD, Editor-in-Chief of Journal of Neurotrauma and Professor, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond. “The studies confirm the importance of GFAP as well as UCH-L1 as biomarkers for the detection of the consequences of TBI, particularly as they relate to neuronal and glial perturbation. The nice coupling of biomarker evaluation and histological examination demonstrates that these biomarkers derive from damaged glial and neuronal elements rather than a generalized cellular upregulation of these proteins. The implications of these studies for future clinical and basic science discovery are profound.”

About the Journal
Journal of Neurotrauma is an authoritative peer-reviewed journal published 24 times per year online with open access options and in print that focuses on the latest advances in the clinical and laboratory investigation of traumatic brain and spinal cord injury. Emphasis is on the basic pathobiology of injury to the nervous system, and the papers and reviews evaluate preclinical and clinical trials targeted at improving the early management and long-term care and recovery of patients with traumatic brain injury. Journal of Neurotrauma is the official journal of the National Neurotrauma Society and the International Neurotrauma Society. Complete tables of content and a sample issue may be viewed on the Journal of Neurotrauma website.

About the Publisher
Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in promising areas of science and biomedical research, including Therapeutic Hypothermia and Temperature Management, Tissue Engineering, and Brain Connectivity. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Share on:
or:

MORE FROM Brain and Nerves

Health news