01:16pm Wednesday 18 October 2017

Study finds new pattern in DNA methylation, with implications for cancer, stem cell lines

Using high-throughput DNA sequencing to study sites on DNA where high levels of methylation occur, the team of scientists discovered a relationship between methylation and the positioning of nucleosomes, which compact and regulate access to DNA in the nucleus of a cell, said Matteo Pellegrini and Steve Jacobsen, researchers with the Broad Stem Cell Research Center at UCLA and senior co-authors of the study.
 
The study was published May 30 in the early online edition of the peer-reviewed journal Nature.
 
The processes required for the survival of a cell depend on the cell’s ability to store and read the genetic information encoded in its DNA. Packaging the long DNA into a tiny nucleus is complicated because the DNA still needs to be accessible to the cell’s molecular machinery. The molecules that compact DNA are called the nucleosome core particles. Each one has about 147 base pairs of DNA wrapped around it. This interaction forms a sort of scaffolding for compaction of the long DNA polymer, while allowing it to be accessible for events such as methylation.
 
DNA methylation is important in regulating genes that play a role in the differentiation of embryonic stem cells and in the development of some cancers, Jacobsen said.  
 
“Changes in DNA methylation are behind a lot of what makes a stem cell a stem cell,” said Jacobsen, a professor of molecular, cell and developmental biology and a Howard Hughes Medical Institute investigator. “As the cell differentiates, the DNA methylation tends to change. One aspect of understanding methylation is understanding its pattern and how it’s laid out within the cell.”
 
In this study, the UCLA team found that the DNA wrapped around nucleosomes is more highly methylated than flanking DNA, which links adjacent DNA–nucleosome complexes.
 
“These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransfereases (the enzymes that methylate DNA) preferentially target nucleosome-bound DNA,” said Pellegrini, an associate professor of molecular, cell and developmental biology and an informatics expert.
 
The work was initially done with the mustard weed Arabidopsis, which is commonly used in plant research. Once the DNA methylation and nucleosome positioning patterns emerged, Pellegrini and Jacobsen repeated the work in human stem cells and found similar patterns.
 
One of the most important unknown aspects of DNA methylation, Jacobsen said, is how the cell determines where the event occurs, and the pattern of nucleosome positions has emerged as an important determinant of methylation.
 
The findings could have implications in fighting cancer because DNA methylation patterns go awry in cancer, often causing tumor-suppressor genes to switch off. The more scientists know about the cellular mechanisms that lay down the correct DNA methylation patterns, the more that process can be manipulated. In the future, this type of research may lead to techniques that result in the ability to control the patterns that go awry and lead to cancer, thus preventing a malignancy.
 
And because DNA methylation is important in stem cell differentiation, this knowledge could lead to ways to correct defects in stem cells lines in the future.
 
Funding for the two-year study came from the National Science Foundation, the Howard Hughes Medical Institute and the Broad Stem Cell Research Center at UCLA.
 
The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research: UCLA’s stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Broad Stem Cell Research Center is committed to a multidisciplinary, integrated collaboration among scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed toward future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine at UCLA, UCLA’s Jonsson Cancer Center, the UCLA Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

Share on:
or:

Health news