08:31pm Monday 23 October 2017

Epigenetic Reprogramming To Create Pluripotent Stem Cells Is Focus of Cellular Reprogramming Special Issue

Advances in the emerging field of epigenetic reprogramming are the focus of a special issue of the peer-reviewed journal Cellular Reprogramming (formerly Cloning and Stem Cells), published by Mary Ann Liebert, Inc. The complete special issue is also available free online.

Reprogrammed human cells that revert to an earlier stage of development and can then be induced to differentiate into a variety of different cell types, such as liver, kidney, or nerve cells, have enormous potential value. Researchers are experimenting with cellular reprogramming strategies that will yield models of human disease for use in research and development of novel therapies. Reprogrammed cells from individual patients could be used to generate patient-specific pluripotent stem cells to correct genetic disorders or to repair or replace damaged tissues. Cellular reprogramming also offers the possibility to generate libraries of cells with specified genetic characteristics that would be suitable for therapeutic use in defined patient populations.

This special issue of Cellular Reprogramming highlights epigenetic mechanisms such as manipulation of DNA methylation patterns and changes in the activity of histone-modifying enzymes that affect chromosome structure. Yu-Qiang Li, PhD, from Shandong University at Weihai (China), explores the signaling pathways and regulatory networks that control gene expression related to cell fate decisions in pluripotent stem cells in the review paper “Master Stem Cell Transcription Factors and Signaling Regulation.”

Ching-Chien Chang, PhD, and colleagues from the University of Connecticut, Storrs, National Taiwan University, Taipei, and Reproductive Biology Associates, Atlanta, GA, compared chromatin remodeling mechanisms that effect an embryo shortly after fertilization to the mechanisms active in nuclear reprogramming achieved by somatic cell nuclear transfer. The results are presented in their paper “Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer.”

“This special issue focuses on the most exciting areas of modern biology. Understanding key events in the epigenetic reprogramming of cells and embryos is critical for the development of reliable procedures for direct reprogramming. This issue is a very significant step in the development of the Journal,” says Professor Sir Ian Wilmut, OBE, FRS, FRSE, Editor-In-Chief of Cellular Reprogramming and director of the MRC Centre for Regenerative Medicine, in Edinburgh.

Cellular Reprogramming, (formerly Cloning and Stem Cells ), published bimonthly in print and online, reflects the new focus in this evolving field. Advances in reprogramming cellular mechanisms are transforming biomedical research and offer new insights on the etiology, development, and potential treatment of various diseases. The Journal emphasizes novel approaches for understanding the cellular and molecular mechanisms that underlie the phenomenon of reprogramming. Coverage includes somatic cell nuclear transfer and reprogramming in early embryos; embryonic stem cells; nuclear transfer stem cells; generation of induced pluripotent stem (iPS) cells; epigenetics; and adult stem cells and pluripotency.

Mary Ann Liebert, Inc., is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, Stem Cells and Development, and Tissue Engineering. Its biotechnology trade magazine, Genetic Engineering and Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 60 journals, books, and newsmagazines is available on our website.


Share on:
or:

MORE FROM Genetics and Birth Defects

Health news