10:46am Monday 24 July 2017

New Study of Gene Mutations Causing Leigh Syndrome Shows Effects on Embryonic Development

The mutations leading to Complex I deficiency disrupt the energy-producing processes in cells, and in mouse ESC models have a negative effect on neuronal development and the initiation of a heartbeat in embryoid bodies, according to a new study published in Stem Cells and Development, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Stem Cells and Development website until February 19, 2016.

Jacqueline Johnson and coauthors from Monash University (Clayton), Royal Children’s Hospital and University of Melbourne (Melbourne), and The Australian National University (Canberra), Australia report on the generation of mouse ESC lines that have no mutations in the Complex I NDUFS4 gene, mutations in one copy of the gene, or mutations in both copies of the gene. In the article “Deletion of the Complex I Subunit NDUFS4 Adversely Modulates Cellular Differentiation,” the researchers show that loss of NDUFS4 function did not affect the expression of other genes in the mitochrondria, which houses the energy-producing machinery of cells. Loss of NDUFS4 function did, however, lead to significant differences in early patterns of cellular gene expression.

“This highly experienced team has provided an elegant demonstration that the deletion of NDUFS4 in mouse embryonic stem cells and their subsequent neural differentiation shows a phenotype caused by the deletion itself rather than chromosomal or mitochondrial sequelae,” says Editor-in-Chief Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI.

Click here to share this release with your colleagues.

About the Journal
Stem Cells and Development, is an authoritative peer-reviewed journal published 24 times per year in print and online. The Journal is dedicated to communication and objective analysis of developments in the biology, characteristics, and therapeutic utility of stem cells, especially those of the hematopoietic system. A complete table of contents and free sample issue may be viewed on the Stem Cells and Development website.

About the Publisher
Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Cellular Reprogramming, Tissue Engineering, and Human Gene Therapy. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Share on:
or:

MORE FROM Genetics and Birth Defects

Health news