09:30am Tuesday 15 October 2019

MRC scientists identify genes that make MRSA difficult to beat

The research team, including scientists at the MRC Human Genetics Unit in Edinburgh and the Universities of St Andrews, Dundee and London, developed a gene map to improve understanding of how MRSA escapes being killed by antimicrobials. For the first time, they were able to map relationships between 95 per cent of MRSA genes, and proposed possible new roles for 22 genes that help MRSA cause disease. One particular gene, ftsH, was singled out as a possible Achilles’ heel in MRSA and could potentially be a focus for new drug development.

As part of the study, researchers examined an antimicrobial agent called Ranalexin, which is derived from the skin of a bullfrog and kills MRSA. Computer analysis, coupled with laboratory tests on MRSA, showed that Ranalexin works by weakening both the bacterial cell wall and membrane. This information may help the development of new combination therapies.

MRSA is a particularly potent bacterial infection and the latest statistics show there were 781 deaths involving MRSA infection in 2009 in the UK – accounting for 62 per cent of deaths that involved Staphylococcus aureus – compared with 51 deaths in 1993. However, the proportion of MRSA infections in 2009 was lower than the peak level of 82 per cent in 2008. ‘Methicillin-resistant’ means the bacteria are unaffected by Methicillin, an antibiotic that could previously kill them.

In hospitals, the proportion of people made ill by MRSA is higher because of more contact with infected cases. People can carry MRSA for a few hours or days or sometimes for weeks or months. They are unaware they are carriers because the bacteria do not harm them or cause symptoms.

Dr Ian Overton at the MRC Human Genetics Unit is pleased with the results:

“Multidrug resistant Staphylococcal infections such as MRSA are a worldwide problem and strains resistant to existing treatments continue to emerge. The development of new drugs is therefore important. Our network biology approach has given insights into how Ranalexin works to kill MRSA and helped us to understand more about how infections may develop. This knowledge contributes towards new strategies for treating MRSA.”

Professor Nick Hastie, Director of the MRC Human Genetics Unit, says:

“This work is a fine example of the relationship between analysing the fundamental processes which help infections to take hold and exploiting this knowledge to improve drug treatments.”

This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC) and the Scottish Government, through a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The findings are published in BMC Systems Biology.”



Notes to editors


For an interview with the lead researcher please contact the MRC Press Office on 0207 395 2345 or email press.office@headoffice.mrc.ac.uk


The article is available to download here.


About MRC


For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century. www.mrc.ac.uk




BBSRC is the UK funding agency for research in the life sciences and the largest single public funder of agriculture and food-related research.


Sponsored by Government, in 2010/11 BBSRC invested around £470 million in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.


BBSRC provides institute strategic research grants to the following:


The Babraham Institute, Institute for Animal Health, Institute for Biological, Environmental and Rural Sciences (Aberystwyth University), Institute of Food Research, John Innes Centre, The Genome Analysis Centre, The Roslin Institute (University of Edinburgh) and Rothamsted Research.


The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.


For more information see: http://www.bbsrc.ac.uk

Share on:

Health news