09:41am Thursday 23 November 2017

Wnt of change in COPD research

The first indication of COPD is usually a chronic cough. As the disease progresses, the airways narrow and often pulmonary emphysema develops. This indicates irreversible expansion and damage to the alveoli, or air sacks. “The body is no longer able to repair the destroyed structures,” explains Dr. Dr. Melanie Königshoff, head of the Research Unit Lung Repair and Regeneration (LRR) at the Comprehensive Pneumology Center (CPC) of Helmholtz Zentrum München. She and her team have made it their job to understand how this happens.

“In our current work we have been able to show that COPD results in a change in the messengers that lung cells use to communicate with one another,” Königshoff continues. Specifically, the scientists discovered increased production of the Wnt5a molecule, which disrupts the classic (or canonical, as the experts call it) Wnt/beta-catenin signaling pathway* that is responsible for such repairs.

“Our working hypothesis was that the relationship between different Wnt messengers is no longer balanced in COPD,” reports Dr. Hoeke Baarsma, LRR scientist and the study’s first author. The team correspondingly searched for possible interference signals. “In both the pre-clinical model and the tissue samples from patients, we found that in COPD tissue particularly the non-canonical Wnt5a molecule is increased and occurs in a modified form.” According to the authors, stimuli that typically cause a reaction in COPD, such as cigarette smoke, additionally lead to increased production of Wnt5a and consequently to impaired lung regeneration.

In the next step, the researchers were able to show where the misdirected signal originates: “It is produced by certain cells in the connective tissue, the so-called fibroblasts,” Baarsma says. When pulmonary epithelial cells were treated with the Wnt5a derived from the fibroblasts, the cells lost their healing ability. The scientists were also able to use antibodies directed against Wnt5a in two different experimental models to slow down the lung destruction and better maintain the lung function.

“Our results show that the classic Wnt/beta-catenin signal cascade is disrupted by the Wnt5a ligand. This is a completely new mechanism in association with COPD and could lead to new therapeutic approaches, which are urgently needed for treatment,” study leader Königshoff explains the importance of the results.

Further Information

* The Wnt signaling pathway is one of many pathways for forwarding signals in order to allow cells to respond to external changes. The signaling pathway is named after its main player “Wnt”, a signaling protein that takes on a key function in the development of various animal cells as a local mediator. Numerous proteins are involved in the canonical (classic) forwarding of the signals, including beta-catenin as the central cellular messenger. A pathway in which Wnt acts through other messengers, as described here, is called a non-canonical signaling pathway; this can have a negative impact on the canonical signaling.

Background:
Melanie Königshoff’s department is a part of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung – DZL). Dr. Hoeke Baarsma works as a post-doctoral scientist in the framework of the PFP program, which is sponsored by the Helmholtz Association.

Original publication:
Baarsma, HA et al. (2016): Non-canonical WNT-5A signaling impairs 1 endogenous lung repair in COPD. Journal of Experimental Medicine, doi: 10.1084/jem.20160675

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. 

The Lung Repair and Regeneration Research Unit is part of the Comprehensive Pneumology Center (CPC), which is a joint undertaking of the Helmholtz Zentrum München, Ludwig Maximilian University Munich with its University Hospital, and the Asklepios Specialist Clinics Munich-Gauting. The CPC’s objective is to conduct research on chronic lung diseases in order to develop new diagnostic tools and therapies. The LRR Research Unit examines new mechanisms and repair processes in the lungs for a better understanding that will allow the development of new therapeutic approaches. The unit also focuses on developing new methods in order to reduce the gap between pre-clinical research and its application on patients. The CPC is a facility of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung – DZL). 

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association’s head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care.


Share on:
or:

Health news