11:29am Wednesday 20 September 2017

New finding offers hope for diabetic wound healing

University of Notre Dame researchers have discovered a compound that accelerates diabetic wound healing, which may open the door to new treatment strategies.

A team of researchers from Notre Dame’s Department of Chemistry and Biochemistry, led by Mayland Chang, previously identified two enzymes called matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of diabetic mice. They proposed that the former might play a role in the body’s response to wound healing and the latter was the pathological consequence of the disease with detrimental effects. The researchers used the MMP-9 inhibitor referred to as ND-322, which accelerated wound healing in diabetic mice.

In a new study that appears in the journal Proceedings of the National Academy of Sciences (PNAS), the researchers report the discovery of a better MMP-9 inhibitor referred to as ND-336.

“ND-336 is a six-fold more potent inhibitor than ND-322 and has 50-fold selectivity towards inhibition of MMP-9 than MMP-8,” Chang said. “In contrast, ND-322 has three-fold selectivity towards inhibition of MMP-9 compared to MMP-8. The current paper compared the efficacy of ND-336 versus ND-322. We found that wounds treated with ND-336 healed significantly faster than those treated with ND-322 because of the better selectivity of ND-336 than ND-322 for inhibition of MMP-9 over MMP-8. In the current paper, we applied the enzyme MMP-8 to wounds of diabetic mice and found accelerated wound healing. We also combined the MMP-9 inhibitor ND-336 and the enzyme MMP-8 and found further acceleration of diabetic wound healing.”

The researchers found that a combination of a selective inhibitor of MMP-9 (a small molecule) and applied MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds.

“The compound ND-336 has potential as a therapeutic to accelerate or facilitate wound healing in diabetic patients,” Chang said. “Likewise, the enzyme MMP-8 could be used to accelerate/facilitate diabetic wound repair. The combination of a small molecule (ND-336) and the enzyme MMP-8 has the potential to accelerate further diabetic wound repair.”

The researchers are currently recruiting diabetic patients to ascertain the levels of MMP-8 and MMP-9 in their wounds. This study is in collaboration with the Center for Wound Healing at Elkhart General Hospital.

The PNAS study can be found at www.pnas.org/content/early/2015/11/18/1517847112.abstract.

Contact: Mayland Chang, 574-631-2965, mchang@nd.edu


Share on:
or:

Health news