07:37pm Friday 17 November 2017
02/17/2017
Nutrition

A single high-fat meal can already influence metabolism

The global proliferation of overweight and obese people and people with type 2 diabetes is often associated with the consumption of saturated fats. Scientists at the German Diabetes Center (Deutsches Diabetes-Zentrum, DDZ) and the Helmholtz Zentrum München have found that even the one-off consumption of a greater amount of palm oil reduces the body’s sensitivity to insulin and causes increased fat deposits as well as changes in the energy metabolism of the liver. The study published in the ‘Journal of Clinical Investigation’ provides information on the earliest changes in the metabolism of the liver that in the long-term lead to fatty liver disease in overweight persons as well as in those with type 2 diabetes.

Fast Food

Source: Fotolia/Andreas Franke

In conjunction with colleagues from Portugal, the DZD scientists published a scientific investigation conducted on healthy, slim men, who were given at random a flavored palm oil drink or a glass of clear water in a control experiment. The palm oil drink contained a similar amount of saturated fat as two cheeseburgers with bacon and a large portion of French fries or two salami pizzas. The scientists showed that this single high-fat meal sufficed to reduce the insulin action, e.g. cause insulin resistance and increase the fat content of the liver. In addition, changes in the energy balance of the liver were proven. The observed metabolic changes were similar to changes observed in persons with type 2 diabetes or non-alcoholic fatty liver disease (NAFLD).*

“The surprise was that a single dosage of palm oil has such a rapid and direct impact on the liver of a healthy person and that the amount of fat administered already triggered insulin resistance”, explained Prof. Dr. Michael Roden, scientist, Managing Director and Chairman at the DDZ and the German Center for Diabetes Research (DZD). “A special feature of our study is that we monitored the liver metabolism of people with a predominantly non-invasive technology, e.g. by magnetic resonance spectroscopy. This allows us to track the storage of sugar and fat as well as the energy metabolism of the mitochondria (power plants of the cell).”

Thanks to the new methods of investigation, the scientists were able to verify that the intake of palm oil affects the metabolic activity of muscles, liver and fatty tissue. The induced insulin resistance leads to an increased new formation of sugar in the liver with a concomitant decreased sugar absorption in the skeletal muscles – a mechanism that makes the glucose level rise in persons afflicted with type 2 diabetes and its pre-stages. In addition, the insulin resistance of the fatty tissue causes an increased release of fats into the blood stream, which in turn continues to foster the insulin resistance. The increased availability of fat leads to an increased workload for the mitochondria, which can in the long term overtax these cellular power plants and contribute to the emergence of a liver disease.

The team, which also included scientists in the team of Prof. Martin Hrabě de Angelis and Prof. Johannes Beckers at the Institute of Experimental Genetics at Helmholtz Zentrum München, suspects that healthy people, depending on genetic predisposition, can easily manage this direct impact of fatty food on the metabolism. The long-term consequences for regular eaters of such high-fat meals can be far more problematic, however.

 

Further Information

* NAFLD is the most common liver disease in the industrial nations and associated with obesity, the so-called “metabolic syndrome,” and is associated with an increased risk in developing type 2 diabetes. Furthermore, NAFLD in advanced stages can result in severe liver damage.

Original publication:
Álvarez Hernández, E. et al. (2017): Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. Journal of Clinical Investigation, doi:10.1172/JCI89444.

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The research objective of the Institute of Experimental Genetics (IEG) is to elucidate the causes and pathogenesis of human diseases. Due to its prominent role in interdisciplinary and international consortia, the IEG is a global leader in the systemic study of mouse models for human diseases and the elucidation of involved genes. The main focus is on metabolic diseases such as diabetes. The IEG is part of the Helmholtz Diabetes Center (HDC).

The German Diabetes Center (DDZ) is the German reference center for diabetes. The goal is to contribute to the prevention, early detection, diagnosis and treatment of diabetes mellitus. At the same time, the research center aims at improving the epidemiological data situation in Germany. DDZ is in charge of the multi-center German Diabetes Study. It is the point of contact for all players in the health sector. In addition, it prepares scientific information on diabetes mellitus and makes it available to the public. DDZ is part of “Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz” (WGL) and is a partner of the German Center for Diabetes Research (DZD e.V.).

The German Center for Diabetes Research (DZD) is a national association that brings together experts in the field of diabetes research and combines basic research, translational research, epidemiology and clinical applications. The aim is to develop novel strategies for personalized prevention and treatment of diabetes. Members are Helmholtz Zentrum München – German Research Center for Environmental Health, the German Diabetes Center in Düsseldorf, the German Institute of Human Nutrition in Potsdam-Rehbrücke, the Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Medical Center Carl Gustav Carus of the TU Dresden and the Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard-Karls-University of Tuebingen together with associated partners at the Universities in Heidelberg, Cologne, Leipzig, Lübeck and Munich.


Share on:
or:

Health news